Recall, that the exponential function $f(x) = a^x$ is a one-to-one function and so it has an inverse function which will be called the **logarithmic function**.

Definition 1. Logarithmic Function: For x > 0, a > 0 and $a \neq 1$,

 $y = \log_a x$ if and only if $x = a^y$.

The function $f(x) = \log_a x$ is called the logarithmic function with base *a*. Its domain is $(0, \infty)$.

The definition of the logarithm says that the two equations

 $y = \log_a x$ (Logarithmic Form)

 $x = a^y$ (Exponential Form)

are equivalent. For example, $\log_3 81 = 4$ because 3 must be raised to the fourth power to obtain 81.

Example 1. Converting from Exponential to Logarithmic Form: Write each exponential equation in logarithmic form.

a. $4^3 = 64$ **b.** $(\frac{1}{2})^4 = \frac{1}{16}$ **c.** $a^{-2} = 7$

Solution:

- **a.** $4^3 = 64$ is equivalent to $\log_4 64 = 3$.
- **b.** $(\frac{1}{2})^4 = \frac{1}{16}$ is equivalent to $\log_{1/2} \frac{1}{16} = 4$.
- **c.** $a^{-2} = 7$ is equivalent to $\log_a 7 = -2$.

Example 2. Converting from Logarithmic Form to Exponential Form: Write each logarithmic equation in exponential form.

a. $\log_3 243 = 5$ **b.** $\log_2 5 = x$ **c.** $\log_a N = x$

Solution:

- **a.** $\log_3 243 = 5$ is equivalent to $243 = 3^5$.
- **b.** $\log_2 5 = x$ is equivalent to $5 = 2^x$.
- **c.** $\log_a N = x$ is equivalent to $N = a^x$.

Example 3. Solve the following equation $\log_2(x^2 - 6x + 10) = 1$.

Solution: To solve logarithmic equations we need to convert into exponential ones.

$$\log_2(x^2 - 6x + 10) = 1$$

$$x^2 - 6x + 10 = 2^1 = 2$$

$$x^2 - 6x + 8 = 0$$

$$(x - 4)(x - 2) = 0.$$

Then x = 4 or x = 2.

Example 4. Find the domain of $f(x) = \log_3(2-x)$.

<u>Solution</u>: Because the domain of the basic logarithmic function $y = \log_3 x$ is $(0, \infty)$, the expression 2 - x must be positive. Then the domain of f(x) is all real numbers such that:

2 - x > 0,

which means that x < 2. Hence, the domain of $f(x) = \log_3(2-x)$ is $(-\infty, 2)$.

Definition 2. Basic Properties of Logarithms: For any base a > 0, with $a \neq 1$,

- 1. $\log_a a = 1$.
- 2. $\log_a 1 = 0$.
- 3. $\log_a a^x = x$ for any real number x.
- 4. $a^{\log_a x} = x$ for any x > 0.

Definition 3. Common Logarithms: The logarithm with base 10 is called the common logarithm and is denoted by omitting the base, so

$$\log x = \log_{10} x.$$

This means that for any x > 0,

$$y = \log x$$
 if and only if $x = 10^y$.

Definition 4. Natural Logarithms: The logarithm with base e is called the natural logarithm and is denoted by

$$\ln x = \log_e x.$$

This means that for any x > 0,

$$y = \ln x$$
 if and only if $x = e^y$.

Example 5. Solve for the variable M in the equation $T = \log(7M - 3)$. Solution: To solve logarithmic equation we need to convert into exponential one:

$$T = \log(7M - 3)$$
$$10^T = 7M - 3$$
$$10^T + 3 = 7M$$

Then $M = \frac{10^T + 3}{7}$.